
REASONING ABOUT SECURE INTEROPERATION
USING SOFT CONSTRAINTS

Stefano Bistarelli1,2, Simon N. Foley3, Barry O’Sullivan3,4

1Istituto di Informatica e Telematica, CNR, Pisa, Italy,
stefano.bistarelli@iit.cnr.it

2Dipartimento di Scienze, Universit«a degli Studi “G. D’Annunzio”, Pescara, Italy,
bista@sci.unich.it

3Department of Computer Science, University College Cork, Ireland
{s.foley,b.osullivan}@cs.ucc.ie

4Cork Constraint Computation Centre, University College Cork, Ireland
b.osullivan@4c.ucc.ie

Abstract The security of a network configuration is based not just on the security of its in-
dividual components and their direct interconnections, but also on the potential
for systems to interoperate indirectly across network routes. Such interoperation
has been shown to provide the potential for circuitous paths across a network that
violate security. In this paper we propose a constraint-based framework for rep-
resenting access control configurations of systems. Thesecure reconfiguration
of a system is depicted as a constraint satisfaction problem.

1. Introduction

In its most general case, determining the security of a system is undecidable
[Harrison et al., 1976] (the safety problem). This has led to the design of a
wide range of decidable security mechanisms that are based on more restric-
tive forms of security, for example, [Amman and Sandhu, 1992,Bertino etal.,
1998]. These mechanisms decide whether an access by a subject is authorized
according to the rules set out in a security policy. A system is secure (upholds
its security policy) if it is not possible for a subject to gain unauthorized access.

The composition of secure systems is not necessarily secure. A user may be
able to gain unauthorized access to an object by taking a circuitous accessroute
across individually secure but interoperating systems [Gong and Qian, 1994,
Gong and Qian, 1996]. Determining security is based not just on the individual
system authorization mechanisms but also on how the systems are configured



to interoperate. For example, if Alice is permitted to have access to Bob’s files
on the Administration system, and Clare is permitted access Alice’s files on the
Sales system, then is it safe to support file sharing between these systems? The
extent of system interoperation must be limited if the administration security
policy states that Clare is not permitted access to Bob’s (administration) files.

The computational challenges of secure interoperation for access control
systems is considered in [Gong and Qian, 1994, Gong and Qian, 1996]. In
their research Gong and Qian represent access control as an abstract graph of
system entities (files, users, etc.) with arcs representing (binary) potential for
access. System interoperation is defined as a form of graph composition,and
determining whether an interoperation is secure can be performed in polyno-
mial time. However, given systems whose interoperation is not secure, then
optimally re-configuring the interoperation such that composition is secure is
NP-complete. Finding an optimal re-configuration is desirable in order to min-
imize the extent of the additional access restrictions and maximize desired in-
teroperation: reconfiguring access control to deny all access, while secure, is
overly restrictive.

We are interested in the development of practical tools for modelling and
analyzing complex system configurations. In this paper we describe how con-
straints [Bistarelli et al., 1997, Bistarelli, 2004, Freuder and Wallace, 1992]
provide a practical and natural approach to modelling and solving the secure
interoperation problem. Constraint solving is an emerging software technology
for declarative description and effective solving of large problems. The advan-
tages of expressing secure interoperation as a constraint satisfaction problem is
that there exists a wide body of existing research results on solving this prob-
lem for large systems of constraints in a fully mechanized manner.

In Section 3 we propose a constraint-based framework for representing ac-
cess control configurations of systems. By building on a semiring of permis-
sions, our framework is sufficiently general to be applied to models such as
[Gong, 1999,Sandhu et al., 1996]. Section 4 defines what it means to securely
reconfigure a system as a constraint satisfaction problem and Section 5 uses
this definition to formulate the meaning of secure interoperation. The advan-
tage of taking the constraint approach is that information about all possible
interoperation vulnerabilities are effectively available during analysis. This
provides the potential for managing tradeoffs between vulnerabilities using
techniques such as [Bistarelli and O’Sullivan, 2003]. Conventional tests for
interoperation [Gong and Qian, 1994, Gong and Qian, 1996] are designed to
find just one vulnerability. Section 6 considers a special case of secureinterop-
eration that is not unlike the approach described in [Gong and Qian, 1994,Gong
and Qian, 1996].



2. Soft Constraints

Constraints have been successfully used in the analysis of a wide variety
of problems ranging from network management, for example [Fruehwirth and
Brisset, 1997], to complex scheduling such as [Bellone et al., 1992]. They have
also been used to analyze security protocols [Bella and Bistarelli, 2001, Bella
and Bistarelli, 2002, Bella and Bistarelli, 2004], to represent integrity policy
[Bistarelli and Foley, 2003a, Bistarelli and Foley, 2003b], for securesystems
interoperation [Bistarelli et al., 2004b,Bistarelli et al., 2004a] and in the devel-
opment of practical security administration tools [Konstantinou et al., 1999].
In [Konstantinou et al., 1999] constraints are used to help the System Admin-
istrator to easily describe network configurations and relations among servers,
firewalls and services for the final users. Constraints are used to represent,
in a declarative manner, the relations among network objects. This permits
the use of local propagation techniques to reconfigure the network whenhard-
ware/software changes occur (particularly in a wireless environment). Such
automatic reconfiguration would not be possible if the network policy was en-
coded using conventional shell scripts.

The constraint programming process consists of the generation of require-
ments (constraints) and solution of these requirements, by specialized con-
straint solvers. When the requirements of a problem are expressed as acol-
lection of boolean predicates over variables, we obtain what is called thecrisp
(or classical) Constraint Satisfaction Problem (CSP). In this case the problem
is solved by finding any assignment of the variables that satisfies all the con-
straints.

Sometimes, when a deeper analysis of a problem is required,softconstraints
are used instead [Bistarelli et al., 1997,Bistarelli et al., 2002,Bistarelli, 2004].
Soft constraints associate a qualitative or quantitative value either to the entire
constraint or to each assignment of its variables. More precisely, they are based
on a semiring structureS = 〈A, +,×,0,1〉 and a set of variablesV with do-
mainD. In particular the semiring operation× is used to combine constraints
together, and the+ operator for disjunction, projection and for comparing lev-
els (a partial order≤S is defined overA such thata ≤S b iff a + b = b).

Technically, aconstraintis a function which, given an assignmentη : V →
D of the variables, returns a value of the semiring. SoC = η → A is the set of
all possible constraints that can be built starting fromS, D andV (values inA
are interpreted as levels of preference or importance or cost).

When using soft constraints it is necessary to specify, via suitable com-
bination operators, how the level of preference of a global solution is ob-
tained from the preferences in the constraints. The combined weight of a set
of constraints is computed using the operator⊗ : C × C → C defined as



(c1 ⊗ c2)η = c1η ×S c2η. Disjunction of constraints⊕ : C × C → C is instead
defined as follows:(c1 ⊕ c2)η = c1η +S c2η

By using the⊕S operator we can easily extend the partial order≤S over
C by definingc1 ⊑S c2 ⇐⇒ c1 ⊕S c2 = c2. In the following, when the
semiring will be clear from the context, we will use⊑.

Moreover, given a constraintc ∈ C and a variablev ∈ V , theprojectionof c

overV − {v}, writtenc ⇓(V −{v}) is the constraintc′ s.t. c′η =
∑

d∈D cη[v :=
d].

3. Access Configuration

Let ENT represent the domain of all possible entities (subjects, objects,
principals) that are of interest across all systems in a network. Access relation-
ships are defined in terms of the permission that one entity holds for another.
The current access constraints in a system are represented as a soft-constraint
C(X, Y ) over variablesX, Y , where fora, b ∈ ENT thenC(a, b) ∈ PERM

is the access permission that entitya holds for entityb.
Permissions are represented using a semiringS = 〈PERM , +,×,⊥,⊤)

wherePERM represents the set of all possible permissions,+ (union) and
× (intersection) are used to combine permissions.⊥ represents the no-access
permission and⊤ represents full-access permission. In general, an entity with
permissionp ∈ PERM implicitly has permissionp′ ≤ p, where≤ is the
partial order relation on the semiringS. Encoding permissions using a partial
order is common, for example, [Bell and Padula, 1976] is based on a partial or-
der of security classes, Java Security permissions are partially ordered[Gong,
1999] and [Bharadwaj and Baras, 2003] codifies Role and Permissionorder-
ings within a semiring.

Definition 1 Access Configuration.An access configuration of a system is
represented as a collection of constraints on the access permissions between
entities fromENT . 2

Example 1 Given an arbitrary semiringS = 〈PERM , +,×,⊥,⊤) of per-
missions, an access configuration that denies all access for all entities inX, Y ∈
ENT is defined as:

C⊥(X, Y ) =̂ ⊥

A system that places no access restrictions on entities is specified as the null
constraintC⊤, whereC⊤(X, Y ) = ⊤ for all X, Y . △

Example 2 Consider a simple systemS1 with permissions no-access (F)
and full-access (T) that are represented by the Boolean algebra

SBool =̂ 〈{F,T},∨,∧,F,T〉.



The system has entities:a, b andc with access constraints

CS1(c, b) =̂ F

CS1(b, a) =̂ F

In this constraint network we can evaluateCS1(a, b) = CS1(b, c) = T and,
by transitivity, CS1(a, c) = T. In practice, access control need not always
be transitive and many interesting and useful requirements can be described
by, what are effectively, non-transitive access configurations [Lee, 1988,Foley,
1992, Foley, 1997, Foley, 2000]. To model non-transitive access flows, prohi-
bitions on transitive access must be explicitly specified within the system of
constraints. For example, adding the constraintCS1(a, c) =̂ F implies that
CS1(a, c) is evaluated asF (the greatest lower bound on the weights of all
paths that connecta to c). The class of all access configurations that are based
on the boolean semiring of permissions is equivalent to the set of reflexive
policies described in [Foley, 1992,Foley, 1997]. △

Example 3 A system supports read and write access control, as defined by
the semiringSrw =̂ 〈{2{r,w},∪,∩, {}, {r, w}〉. The system has constraints
specified as

CSrw
(b, c) =̂ {r} CSrw

(b, a) =̂ {}

CSrw
(c, b) =̂ {}

and all other accesses are permitted. For example,CSrw
(a, b) = {r, w} and

CSrw
(a, c) = {r} over entitiesa, b andc. △

4. Access Reconfiguration

An existing access configuration may be safely re-configured by further re-
stricting (decreasing permission levels) the existing access relationships. In-
creasing (according to the semiring) permissions between existing system en-
tities is not permitted as it may lead to an entity having access that was previ-
ously denied.

Definition 2 Secure Reconfiguration.We say thatCS′ is a suitable recon-
figuration of access configurationCS if CS′ ⊑ CS , where for any assignmentη

of variables to domain values fromENT , thenCS′η ≤ CSη. 2

It follows by definition that⊑ is a partial order with most restrictive configu-
rationC⊥ and least restrictive configurationC⊤. We have for any configuration
CS thatC⊥ ⊑ CS ⊑ C⊤.

Example 4 ConfigurationCSrw
can be securely reconfigured asCS′

rw
, where

CSrw
(b, c) =̂ CSrw

(b, a) =̂ CSrw
(c, b) =̂ {}

We haveC⊥ ⊑ CS′
rw

⊑ CSrw
⊑ C⊤. △



5. Access Interoperation

A network is composed of a number of different interoperating systems. For
the purposes of this paper we assume that interoperation is represented by en-
tities that are common to the individual systems. For example, a system with
usera and a shared filesystemb, interoperates with any system that has the
same usera or mounts the same file systemb. While a system has control
over its own system it has no jurisdiction over access control on other systems.
Therefore, when a system interoperates with another, we need to ensure that
the interoperation is such that it is not possible for the access rules of the orig-
inal system to be bypassed by taking a circuitous route through the connected
system.

When (securely) composing systemsS1 andS2, the new ‘combined’ sys-
temS3 must represent a secure reconfiguration ofS1 andS2, that is,CS3 ⊑
CS1 andCS3 ⊑ CS2. It is clear thatC⊥ is a secure re-configuration as it pro-
hibits all access. However,C⊥ is overly restrictive; we seek the least restrictive
secure re-configuration ofS1 andS2.

Definition 3 Secure Configuration Composition. The (secure) configura-
tion of interoperating systemsS1 andS2 is configured asCS1 ⊗ CS2, ENT ,
then(c1 ⊗ c2)η = c1η ×S c2η. This corresponds to conjunction of constraints.
2

The set of all possible secure access configurations forms a lattice, with
partial order⊑, lowest upper bound operator⊗ and unique lowest boundC⊥.
Therefore, the configuration specified byCS1⊗CS2 provides the least restrictive
secure re-configuration for the interoperation of systemsS1 andS2.

Example 5 Using the semiring from Example 2, a systemS3 manages enti-
ties{a,c,d} and has access configuration

CS3(a,c) =̂ F CS3(a,d) =̂ F

CS3(d,c) =̂ F CS3(a,d) =̂ F

Since the system does not control access to entityb, no access constraints can
be placed on this entity. The least restrictive re-configuration of the composed
system is depicted asCS1 ⊗ CS3 in Figure 1, where solid (green) line repre-
sents permitted flows (T), and dashed (red) lines represent not permitted flow
(F). This new configuration ensures (under the⊑ ordering) that the access
restrictions of the original configurations are preserved. For example,while
CS1(d,c) = T we haveCS1 ⊗ CS3(d,c) = F sinceCS3(d,c) =̂ F.

△

Configuration intersection can be used to guide the re-configuration of the
original systems. A systemS1 that is to be (securely) composed with a system



Figure 1. ConfigurationsCS1, CS3 andCS1 ⊗ CS3

S2 should be re-configured using the access restrictions of(CS1 ⊗CS2). Since
⊗ gives the lowest upper bound on configurations according to the secure re-
configuration (⊑) relation, then(CS1 ⊗ CS2) gives the least restrictive secure
re-configuration ofCS1 that also ensures the access restrictions ofCS2.

Definition 4 Strict Secure Interoperation. SystemsS1 and S2 securely
interoperate in a strict manner if they enforce the access constraints of each
other, that is, ifCS1 can be regarded as a secure re-configuration ofCS2 and
vice-versa.

To ensure strict secure interoperation, systemS1 can be (securely) re-configured
asC′

S1 =̂ (CS1 ⊗ CS2) and, similarlyC′
S2 =̂ (CS1 ⊗ CS2). 2

The above definition of secure interoperation is overly restrictive as it re-
quires each system to be able to enforce the access restrictions of the other.
While the constraint(CS1 ⊗ CS2) represents the best secure (according to⊑)
re-configuration for the ‘combined’ system (defined in terms of entities from
both systems), in practice, the systemS1 can only enforce the restrictions on
the entities that it manages, and similarly forS2. It may not be feasible to
securely re-configureS1 with CS1 ⊗CS2 if S1 has no jurisdiction over entities
that are managed only byS2. We therefore consider a weaker notion of secure
interoperation.

Let thealphabetENTS ⊆ ENT of a systemS define the set of entities
over which the systemS can exercise access control. If we do not require
a system to be responsible for access control on entities that are not in its
alpabet then for secure interoperation betweenS1 andS2 we need only ensure
thatCS1 enforces the access constraints of the combined system for elements
of ENTS1, that is, whenever we have domain entitiesa,b ∈ ENTS1 then



CS1(a,b) ≤ (CS1 ⊗ CS2)(a,b). This can be defined in terms of the secure
re-configuration relation as follows.

Definition 5 Loose Secure Interoperation. LetC⊤
S representing a systemS

that places/assumes no access constraint over elements inENTS , and com-
pletely denies flows among entities when one of them is not inENTS . More
formally, we haveC⊤

S (X, Y ) = ⊤ when bothX andY are elements ofENTS ,
andC⊤

S (X, Y ) = ⊥ when eitherX or Y (or both) are not elements ofENTS .
SystemsS1 andS2 securely interoperate in a loose manner if they uphold the
constraints (with respect to elements from their alphabet) in their composition,
that is,

CS1 ⊗ C⊤
S1 ⊑ (CS1 ⊗ CS2)

CS2 ⊗ C⊤
S2 ⊑ (CS1 ⊗ CS2)

To ensure loose secure interoperation, systemS1 should be (securely) re-
configured asC ′

S1(X, Y ) =̂ (CS1 ⊗ CS2) whenX, Y ∈ ENTS , and similarly
for S2. 2

Example 6 Continuing Example 5,S1 andS3 are re-configured for loose
secure interoperation as depicted in Figure 2. Note that in practice, networks

Figure 2. Re-configurationsC′
S1 andC′

S3

C′
S1 andC′

S2 would also include nodesd andb, respectively, but with no con-
necting arcs (unconstrained permissions). Notice also that as in Example 5
solid (green) line represents permitted flows (T), and dashed (red) lines repre-
sent not permitted flow (F).

If systemsCS1 andCS3 are reconfigured in this way then we can be confident
that their interoperation will be secure. △



6. Access Transitivity

Reconfiguration for (loose) secure interoperation gives the most permissive
reconfiguration (that does not violate the original configurations). If asystem
does not include an entity in its alphabet then it is assumed that it places no
restrictions on access to it.

It is useful to consider variations of this operation for more restrictive sce-
narios. In particular, some entities that are common to interoperating systems
may induce transitive relationships between entities. For example, suppose
thatc is a service that is shared between systemsS1 andS3 (Example 5), and
CS1(b,c) andCS3(c,d). Rather than permitting all accesses betweenb andd
(as computed by⊗, since there are no explicit restrictions these entities), we
could instead assume that there is an implicit transitive restriction and compute
a limited transitive closure, allowing access fromb to d, but not vice-versa.

Definition 6 Secure Reconfiguration For Transitivity. A systemS1 with
configurationCS1 is securely reconfigured asC∗A

S1 to deal with transitive entities
A, where

C∗A
S1 (X, Z) =̂ CS1(X, Z) ⊗ (CS1(X, Y ) ⊗ C′

S1(Y, Z)) ⇓{X,Z}

whereC′
S1 is defined as follows:

for each entitye ∈ ENT , C′
S1(e, e) = ⊤;

if 〈e, g〉 ∈ CS1
, ande ∈ A (that ise is a transitive entity), thenC′

S1(e, g) =
⊤;

Note that we haveC∗A
S1 ⊑ CS1 2

Example 7 The secure transitive interoperation reconfiguration ofS1 and
S3 (Example 5) with transitive entityc is depicted in Figure 3. △

Definition 7 (Loose) Secure Transitive Interoperation. SystemsS1 andS2
securely interoperate given transitive entitiesA if they do not have to be se-
curely reconfigured for interoperation, that is,

CS1 ⊗ C⊤
S1 ⊑ (CS1 ⊗ CS2)

∗A

CS2 ⊗ C⊤
S2 ⊑ (CS1 ⊗ CS2)

∗A

2

Another variation of the scenarios consider a different type of transitivity. In
the previous example we assume that there is an implicit transitive restriction
on entityc and we compute a limited transitive closure, allowing access from
b to d, but not vice-versa. Here, we assume instead that entityb can have



Figure 3. Reconfiguration(CS1 ⊗ CS3)
∗{c}

implicit transitive permission (instead of restriction). This means that since we
have a flow betweena andb and betweenb andc, we must have also a flow
betweena andc.

Example 8 The secure transitive interoperation reconfiguration ofS1 and
S3 (Example 5) with transitive entityc for permission flows is depicted in
Figure 4. △

Definition 8 Secure Reconfiguration For Transitivity (permissions). A sys-
tem S1 with configurationCS1 is securely reconfigured asC2A

S1 to deal with
transitive entitiesA, where

C2A
S1 (X, Z) =̂ (CS1(X, Y ) ⊗ C′

S1(Y, Z)) ⇓{X,Z}

whereC′
S1 is defined as follows:

for each entitye ∈ ENT , C′
S1(e, e) = ⊤;

if 〈e, g〉 ∈ CS1
, ande ∈ A (that ise is a transitive entity), thenC′

S1(e, g) =
⊤;

Note that we haveCS1 ⊑ C2A
S1 2

7. Discussion and Conclusions

The approach that we present in this paper represents a paradigm shift in the
modelling and analysis of interoperability. We present a constraint model that



Figure 4. Reconfiguration(CS1 ⊗ CS3)
2{c}

provides a natural description of a network of interoperating systems. While
constraint solving is NP-complete in general, this has not detracted from its
uptake as a practical approach to solving many real-world problems [Wallace,
1996]. Previous approaches determine secure interoperation in polynomial
time, but re-configuring an existing network of systems for secure interop-
eration, in an optimal way, is NP-complete [Gong and Qian, 1994, Gong and
Qian, 1996]. Using a constraint model, we can rely on a significant body of
successful techniques from the field of constraint processing for finding the set
of secure re-configurations with reasonable effort. As part of our future work
in this area we plan to develop an constraint-based implementation with which
to demonstrate our approach on some real world data.





References

Amman, P. and Sandhu, R. (1992). The extended schematic protectionmodel.Journal of Com-
puter Security, 1(4).

Bell, D.E. and Padula, L. J. La (1976). Secure computer system: unified exposition and MUL-
TICS interpretation. Report ESD-TR-75-306, The MITRE Corporation.

Bella, G. and Bistarelli, S. (2001). Soft Constraints for Security Protocol Analysis: Confiden-
tiality. In Proc. of the 3rd International Symposium on Practical Aspects of Declarative
Languages (PADL’01), LNCS 1990, pages 108–122. Springer-Verlag.

Bella, G. and Bistarelli, S. (2002). Confidentiality levels and deliberate/indeliberate protocol
attacks. InProc. Security Protocols 10th International Workshop, Cambridge, UK, April,
2002, Revised Papers, LNCS, pages 104–119. Springer-Verlag.

Bella, G. and Bistarelli, S. (2004). Soft constraint programming to analysing security protocols.
Theory and Practice of Logic Programming (TPLP), 4(5):1–28. To appear.

Bellone, J., Chamard, A., and Pradelles, C. (1992). Plane - an evolutive planning system for air-
craft production. InProc. 1st Interantional Conference on Practical Applications of Prolog
(PAP92).

Bertino, E. et al. (1998). An authorization model and its formal semantics. InProceedings of the
European Symposium on Research in Computer Security, pages 127–142. Springer LNCS
1485.

Bharadwaj, V.G and Baras, J.S. (2003). Towards automated negotiation of access control poli-
cies. InProc. of IEEE Workshop Policies for Distributed Systems and Networks, pages 77–
80.

Bistarelli, S. (2004).Semirings for Soft Constraint Solving and Programming, volume 2962 of
Lecture Notes in Computer Science. Springer.

Bistarelli, S. and Foley, S.N. (2003a). Analysis of integrity policies using soft constraints. In
Proceedings IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works (POLICY2003), Lake Como,Italy, June 4-6, 2003, pages 77–80. IEEE Press.

Bistarelli, S. and Foley, S.N. (2003b). A constraint based frameworkfor dependability goals:
Integrity. In 22nd International Conference on Computer Safety, Reliability and Security
(SAFECOMP2003), Proceedings, 23-26 September 2003, Edinburgh, Scotland, United King-
dom, volume 2788 ofLecture Notes in Computer Science, pages 130–143. Springer.

Bistarelli, S., Foley, S.N., and O’Sullivan, B. (2004a). Detecting and eliminating the cascade
vulnerability problem from multi-level security networks using soft constraints. InProceed-
ings Innovative Applications of Artificial Intelligence Conference (IAAI-04), pages 808–813.
AAAI Press.



Bistarelli, S., Foley, S.N., and O’Sullivan, B. (2004b). Modelling and detecting the cascade vul-
nerabiliy problem using soft constraints. InProc. ACM Symposium on Applied Computing
(SAC 2004), pages 383–390. ACM Press.

Bistarelli, S., Montanari, U., and Rossi, F. (1997). Semiring-based constraint solving and opti-
mization.Journal of ACM, 44(2):201–236.

Bistarelli, S., Montanari, U., and Rossi, F. (2002). Soft concurrentconstraint programming. In
Programming Languages and Systems: 11th European Symposium on Programming, ESOP
2002 held as Part of the Joint European Conference on Theory and Practice of Software,
ETAPS 2002, Proceedings, Grenoble, France, April 8-12, 2002, volume 2305 ofLecture
Notes in Computer Science, pages 53–67. Springer.

Bistarelli, S. and O’Sullivan, B. (2003). A theoretical framework for tradeoff generation using
soft constraints. InResearch and Development in Intelligent Systems XX, Proceedings of AI-
2003, the Twenty-third SGAI International Conference on Knowledge-Based Systems and
Applied Artificial Intelligence, pages 69–82. Springer, BCS Conference Series "Research
and Development in Intelligent Systems xx".

Foley, S.N. (1992). Aggregation and separation as noninterferenceproperties.Journal of Com-
puter Security, 1(2):159–188.

Foley, S.N. (1997). The specification and implementation of commercialsecurity requirements
including dynamic segregation of duties. InACM Conference on Computer and Communi-
cations Security, pages 125–134.

Foley, S.N. (2000). Conduit cascades and secure synchronization. In ACM New Security Paradigms
Workshop.

Freuder, E.C. and Wallace, R.J. (1992). Partial constraint satisfaction. AI Journal, 58.
Fruehwirth, T. and Brisset, P. (1997). Optimal planning of digital cordless telecommunication

systems. InProc. PACT97, London, UH.
Gong, L. (1999).Inside Java2 Platform Security. Addison Wesley.
Gong, L. and Qian, X. (1994). The complexity and composability of secure interoperation. In

Proceedings of the Symposium on Security and Privacy, pages 190–200, Oakland, CA. IEEE
Press.

Gong, L. and Qian, X. (1996). Computational issues in secure interoperation.IEEE Trans. Softw.
Eng., 22(1):43–52.

Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in operating systems.Communica-
tions of the ACM, 19:461–471.

Konstantinou, A.V., Yemini, Y., Bhatt, S., and Rajagopalan, S. (1999). Managing security in
dynamic networks. InProc. USENIX Lisa’99.

Lee, T.M.P. (1988). Using mandatory integrity to enforce ‘commerical’ security. InProceedings
of the Symposium on Security and Privacy, pages 140–146.

Sandhu, R. et al. (1996). Role based access control models.IEEE Computer, 29(2):38–47.
Wallace, M. (1996). Practical applications of constraint programming.Constraints, 1(1–2):139–

168.


