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Abstract The security of a network configuration is based not just on the sectitty/in-
dividual components and their direct interconnections, but also onatesfal
for systems to interoperate indirectly across network routes. Suchpetetion
has been shown to provide the potential for circuitous paths across erkeéhat
violate security. In this paper we propose a constraint-based frarkdéararep-
resenting access control configurations of systems. sEcare reconfiguration
of a system is depicted as a constraint satisfaction problem.

1. Introduction

In its most general case, determining the security of a system is undecidable
[Harrison et al., 1976] (the safety problem). This has led to the design of a
wide range of decidable security mechanisms that are based on more restric
tive forms of security, for example, [Amman and Sandhu, 1992, Bertiab et
1998]. These mechanisms decide whether an access by a subject rizadtho
according to the rules set out in a security policy. A system is secur®i@sph
its security policy) if it is not possible for a subject to gain unauthorizegsgc

The composition of secure systems is not necessarily secure. A useemay b
able to gain unauthorized access to an object by taking a circuitous acuss
across individually secure but interoperating systems [Gong and (8&d, 1
Gong and Qian, 1996]. Determining security is based not just on the indilvid
system authorization mechanisms but also on how the systems are configured



to interoperate. For example, if Alice is permitted to have access to Bob’s files
on the Administration system, and Clare is permitted access Alice’s files on the
Sales system, then is it safe to support file sharing between these systeens? T
extent of system interoperation must be limited if the administration security
policy states that Clare is not permitted access to Bob’s (administration) files.

The computational challenges of secure interoperation for acces®lcontr
systems is considered in [Gong and Qian, 1994, Gong and Qian, 1996]. |
their research Gong and Qian represent access control as arcagsiph of
system entities (files, users, etc.) with arcs representing (binary) poétentia
access. System interoperation is defined as a form of graph compoaititn,
determining whether an interoperation is secure can be performed in polyno
mial time. However, given systems whose interoperation is not secure, then
optimally re-configuring the interoperation such that composition is secure is
NP-complete. Finding an optimal re-configuration is desirable in order to min-
imize the extent of the additional access restrictions and maximize desired in-
teroperation: reconfiguring access control to deny all access, wdulee is
overly restrictive.

We are interested in the development of practical tools for modelling and
analyzing complex system configurations. In this paper we describe twow c
straints [Bistarelli et al., 1997, Bistarelli, 2004, Freuder and Wallace2]199
provide a practical and natural approach to modelling and solving theesecu
interoperation problem. Constraint solving is an emerging software teajnolo
for declarative description and effective solving of large problemg. advan-
tages of expressing secure interoperation as a constraint satisfactberp is
that there exists a wide body of existing research results on solving ttis pro
lem for large systems of constraints in a fully mechanized manner.

In Section 3 we propose a constraint-based framework for repregextin
cess control configurations of systems. By building on a semiring of permis-
sions, our framework is sufficiently general to be applied to models such as
[Gong, 1999, Sandhu et al., 1996]. Section 4 defines what it meansuese
reconfigure a system as a constraint satisfaction problem and Sectgss5 u
this definition to formulate the meaning of secure interoperation. The advan-
tage of taking the constraint approach is that information about all possible
interoperation vulnerabilities are effectively available during analysisis Th
provides the potential for managing tradeoffs between vulnerabilities using
techniques such as [Bistarelli and O’Sullivan, 2003]. Convention# fies
interoperation [Gong and Qian, 1994, Gong and Qian, 1996] are dmbipn
find just one vulnerability. Section 6 considers a special case of siextearep-
eration that is not unlike the approach described in [Gong and Qian,&884
and Qian, 1996].



2. Soft Constraints

Constraints have been successfully used in the analysis of a wide variety
of problems ranging from network management, for example [Fruehwidth an
Brisset, 1997], to complex scheduling such as [Bellone et al., 1992}, fdne
also been used to analyze security protocols [Bella and Bistarelli, 2004, Be
and Bistarelli, 2002, Bella and Bistarelli, 2004], to represent integrity policy
[Bistarelli and Foley, 2003a, Bistarelli and Foley, 2003b], for seaystems
interoperation [Bistarelli et al., 2004b, Bistarelli et al., 2004a] and in tivelde
opment of practical security administration tools [Konstantinou et al., 1999].
In [Konstantinou et al., 1999] constraints are used to help the System Admin-
istrator to easily describe network configurations and relations amongrserv
firewalls and services for the final users. Constraints are used teseyy
in a declarative manner, the relations among network objects. This permits
the use of local propagation technigues to reconfigure the network ndrein
ware/software changes occur (particularly in a wireless environmenih S
automatic reconfiguration would not be possible if the network policy was en-
coded using conventional shell scripts.

The constraint programming process consists of the generation ofe@equir
ments (constraints) and solution of these requirements, by specialized con-
straint solvers. When the requirements of a problem are expressedoés a
lection of boolean predicates over variables, we obtain what is callextidpe
(or classical) Constraint Satisfaction Problem (CSP). In this case tlbéepno
is solved by finding any assignment of the variables that satisfies all the con
straints.

Sometimes, when a deeper analysis of a problem is requioéidonstraints
are used instead [Bistarelli et al., 1997, Bistarelli et al., 2002, BistareD4R0
Soft constraints associate a qualitative or quantitative value either to the entir
constraint or to each assignment of its variables. More precisely, tadaaed
on a semiring structur8 = (A, +, x,0, 1) and a set of variableg with do-
main D. In particular the semiring operationis used to combine constraints
together, and the- operator for disjunction, projection and for comparing lev-
els (a partial ordeK g is defined overd such that <g b iff a + b = b).

Technically, aconstraintis a function which, given an assignment V' —

D of the variables, returns a value of the semiringCSe n — A is the set of
all possible constraints that can be built starting frf&nD andV (values inA
are interpreted as levels of preference or importance or cost).

When using soft constraints it is necessary to specify, via suitable com-
bination operators, how the level of preference of a global solution is ob
tained from the preferences in the constraints. The combined weightaif a s
of constraints is computed using the operator: C x C — C defined as



(c1 ® ca)n = c1m X g can. Disjunction of constraints : C x C — C is instead
defined as follows(cy @ c2)n = c1n +5 can

By using theds operator we can easily extend the partial order over
C by defininge; Cg ¢co <= c¢1 ®g ca = co. In the following, when the
semiring will be clear from the context, we will use

Moreover, given a constrainte C and a variable € V, theprojectionof ¢
overV — {v}, writtenc (v _y,y) is the constraint’ s.t.c'n = 3", p enfv :=
d].

3. Access Configuration

Let ENT represent the domain of all possible entities (subjects, objects,
principals) that are of interest across all systems in a network. Acekd®n-
ships are defined in terms of the permission that one entity holds for another.
The current access constraints in a system are represented asansbf&int
C(X,Y) over variablesX, Y, where fora,b € ENT thenC(a,b) € PERM
is the access permission that entitirolds for entityb.

Permissions are represented using a semifing (PERM ,+,x, 1, T)
where PERM represents the set of all possible permissiengunion) and
x (intersection) are used to combine permissiohgepresents the no-access
permission and” represents full-access permission. In general, an entity with
permissionp € PERM implicitly has permissiony’ < p, where< is the
partial order relation on the semirirf§y Encoding permissions using a partial
order is common, for example, [Bell and Padula, 1976] is based on al jpartia
der of security classes, Java Security permissions are partially orjd&ved,
1999] and [Bharadwaj and Baras, 2003] codifies Role and Permissitan-
ings within a semiring.

DEeFINITION 1 Access ConfiguratiorAn access configuration of a system is
represented as a collection of constraints on the access permissionsrbetwe
entities fromENT. O

ExaMPLE 1 Given an arbitrary semiring = (PERM , +, x, L, T) of per-
missions, an access configuration that denies all access for all entilie¥ire
ENT is defined as:

CL(X,)Y)= L

A system that places no access restrictions on entities is specified as the null
constrainCr, whereC+(X,Y) = T forall X, Y. A

ExampLE 2 Consider a simple systeisil with permissions no-acces¥)
and full-accessT) that are represented by the Boolean algebra

SBool = <{F, T}, V, A, F7 T>



The system has entitiea; b andc with access constraints
(251 (C, b) = F
CSl (b, a) = F

In this constraint network we can evaludtg (a,b) = Cs1(b,c) = T and,

by transitivity, Cs1(a,c) = T. In practice, access control need not always
be transitive and many interesting and useful requirements can be @escrib
by, what are effectively, non-transitive access configurations,[L888, Foley,
1992, Foley, 1997, Foley, 2000]. To model non-transitive access flprohi-
bitions on transitive access must be explicitly specified within the system of
constraints. For example, adding the constréint(a,c) = F implies that
Csi(a,c) is evaluated a¥ (the greatest lower bound on the weights of all
paths that conneetto c). The class of all access configurations that are based
on the boolean semiring of permissions is equivalent to the set of reflexive
policies described in [Foley, 1992, Foley, 1997]. A

ExAMPLE 3 A system supports read and write access control, as defined by
the semiringS,,, = ({2{PW} U, N, {}, {r,w}). The system has constraints
specified as

Cs,,(b,c) ={r}  Cs,,(b,a) ={}
Cs,.,(c,b) = {}

and all other accesses are permitted. For exaniple,(a,b) = {r,w} and
Cs,.,(a,c) = {r} over entitiesa, b andc. A

4. Access Reconfiguration

An existing access configuration may be safely re-configured by furthe
stricting (decreasing permission levels) the existing access relationships. |
creasing (according to the semiring) permissions between existing system en
tities is not permitted as it may lead to an entity having access that was previ-
ously denied.

DEFINITION 2 Secure ReconfigurationVe say thaCs is a suitable recon-
figuration of access configuratidghy if Cs: C Cg, where for any assignment
of variables to domain values fromNT, thenCg:n < Cgn. O

It follows by definition that_ is a partial order with most restrictive configu-
rationC, and least restrictive configuratigh. We have for any configuration
CgthatC, C Cg C Cr.

ExampLE 4 ConfiguratiorCg,,, can be securely reconfigured@s , where
CS'r‘w (b7 C) = CST'w (b7 a) = CS’r‘w (C7 b) = {}
We haveCL C Csﬁw C Csrw C CT. A



5. Access Interoperation

A network is composed of a number of different interoperating systems. Fo
the purposes of this paper we assume that interoperation is represgmred b
tities that are common to the individual systems. For example, a system with
usera and a shared filesysteln interoperates with any system that has the
same usern or mounts the same file systedmn While a system has control
over its own system it has no jurisdiction over access control on oth&msgs
Therefore, when a system interoperates with another, we need teeghatr
the interoperation is such that it is not possible for the access rules ofithe o
inal system to be bypassed by taking a circuitous route through the dednec
system.

When (securely) composing systetsis and S2, the new ‘combined’ sys-
tem S3 must represent a secure reconfiguratiortbfand 52, that is,Cgs3 C
Cs1 andCg3 C Cgo. Itis clear thatC, is a secure re-configuration as it pro-
hibits all access. Howevet, is overly restrictive; we seek the least restrictive
secure re-configuration ¢fl and.S2.

DEerFINITION 3 Secure Configuration Compositiohe (secure) configura-
tion of interoperating systems1 and S2 is configured a€g; ® Cgo, ENT,
then(c; ® c2)n = c1m X g can. This corresponds to conjunction of constraints.
O

The set of all possible secure access configurations forms a lattice, with
partial orderc, lowest upper bound operatgr and unique lowest bound, .
Therefore, the configuration specified®y; ®Cgs2 provides the least restrictive
secure re-configuration for the interoperation of systémand.S2.

ExaMPLE 5 Using the semiring from Example 2, a systéilimanages enti-
ties{a,c,d} and has access configuration

Css(a,c) =F Cssz(ad) =F
ng(d,C) =F ng(a,d) =F

Since the system does not control access to ebfiho access constraints can
be placed on this entity. The least restrictive re-configuration of the ceetpo
system is depicted a%; ® Cgs in Figure 1, where solid (green) line repre-
sents permitted flowsI{), and dashed (red) lines represent not permitted flow
(F). This new configuration ensures (under theordering) that the access
restrictions of the original configurations are preserved. For examjblige
Cs1(d,c) = T we haveCs; ® Cgs(d,c) = F sinceCgs(d,c) = F.

A

Configuration intersection can be used to guide the re-configuration of the
original systems. A systefil that is to be (securely) composed with a system



.......

(4 . b
ra b A Fax b
/ A i '
| ® || = || W/
\ A Ny | Y

¢ & *c d Ak d

M M

Figure 1. Configuration€s1, Css andCs; ® Css

S2 should be re-configured using the access restrictiof§faf® Cg2). Since

® gives the lowest upper bound on configurations according to theesesur
configuration ) relation, then(Cs; ® Cg2) gives the least restrictive secure
re-configuration o€s; that also ensures the access restrictionésef

DEFINITION 4 Strict Secure Interoperation SystemsS1 and S2 securely
interoperate in a strict manner if they enforce the access constraintsiof ea
other, that is, ifCg; can be regarded as a secure re-configuratiafisefand
vice-versa.

To ensure strict secure interoperation, systanean be (securely) re-configured
asCs; = (Cs1 @ Cs2) and, similarlyC, = (Cs1 ® Cs2). O

The above definition of secure interoperation is overly restrictive as it re
quires each system to be able to enforce the access restrictions of the othe
While the constrainfCs; ® Cg2) represents the best secure (according Yo
re-configuration for the ‘combined’ system (defined in terms of entities fro
both systems), in practice, the systéf can only enforce the restrictions on
the entities that it manages, and similarly 2. It may not be feasible to
securely re-configur§1 with Cs1 ® Cgo if S1 has no jurisdiction over entities
that are managed only [82. We therefore consider a weaker notion of secure
interoperation.

Let thealphabetENTs C ENT of a systemS define the set of entities
over which the systeny can exercise access control. If we do not require
a system to be responsible for access control on entities that are not in its
alpabet then for secure interoperation betwgémndS2 we need only ensure
thatCg, enforces the access constraints of the combined system for elements
of ENTgq, that is, whenever we have domain entiteb € ENTg; then



Csi(a,b) < (Cs1 ® Cs2)(a,b). This can be defined in terms of the secure
re-configuration relation as follows.

DEFINITION 5 Loose Secure Interoperatiohet Cg representing a systet

that places/assumes no access constraint over elemeht& iy, and com-
pletely denies flows among entities when one of them is nét N{I's. More
formally, we haveig(X, Y') = T when bothX andY are elements adE N Ty,
andC{ (X,Y) = L when eitherX or Y (or both) are not elements &fNT’s.
SystemsS1 and.S2 securely interoperate in a loose manner if they uphold the
constraints (with respect to elements from their alphabet) in their composition,

that is,
Cs1®Cl T (Cs1®Cs2)
Cso®Cdy L (Cs1®Cs2)
To ensure loose secure interoperation, systdnshould be (securely) re-
configured ag’y, (X,Y) = (Cs1 ® Cs2) whenX,Y € ENTg, and similarly
for S2. O

ExampLE 6 Continuing Example 551 and S3 are re-configured for loose
secure interoperation as depicted in Figure 2. Note that in practice, rkstwor

Cs; Cs3
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Figure 2. Re-configuration§s, andCs;

Cs, andCs, would also include nodes andb, respectively, but with no con-
necting arcs (unconstrained permissions). Notice also that as in Example 5
solid (green) line represents permitted floWy,(and dashed (red) lines repre-

sent not permitted flowkK).
If system<g; andCgs are reconfigured in this way then we can be confident

that their interoperation will be secure. A



6. Access Transitivity

Reconfiguration for (loose) secure interoperation gives the most pgveis
reconfiguration (that does not violate the original configurations).sifsiem
does not include an entity in its alphabet then it is assumed that it places no
restrictions on access to it.

It is useful to consider variations of this operation for more restrictiwe sc
narios. In particular, some entities that are common to interoperating systems
may induce transitive relationships between entities. For example, suppose
thatc is a service that is shared between systéthandS3 (Example 5), and
Csi(b,c) andCgs(c,d). Rather than permitting all accesses betweemdd
(as computed by, since there are no explicit restrictions these entities), we
could instead assume that there is an implicit transitive restriction and compute
a limited transitive closure, allowing access frorno d, but not vice-versa.

DEFINITION 6 Secure Reconfiguration For TransitivityA systemS1 with
configuratiorCg, is securely reconfigured dg/l“ to deal with transitive entities
A, where

C5l(X,2) = Ca(X.2)@ (Cs1(X,Y) ®C5i(Y, 2)) bix.z)
whereCy, is defined as follows:
= for each entite € ENT, Cy,(e,e) =T,

= if (e,0) € Cg,, ande € A (thatise is a transitive entity), the@iy, (e, g) =
T
Note that we havé! C Csy O

ExampLE 7 The secure transitive interoperation reconfiguratiorbdfand
53 (Example 5) with transitive entitg is depicted in Figure 3. A

DEFINITION 7 (Loose) Secure Transitive InteroperatiddystemsS1 andS2
securely interoperate given transitive entiti¢sf they do not have to be se-
curely reconfigured for interoperation, that is,

Cs1®Cl T (Cs1®Cs2)™
Cs2 ® ng C (Cs1® 652)*A
O
Another variation of the scenarios consider a different type of traitgitin
the previous example we assume that there is an implicit transitive restriction

on entityc and we compute a limited transitive closure, allowing access from
b to d, but not vice-versa. Here, we assume instead that elmtdgn have
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Figure 3. Reconfiguration{Cs; ® Cs3)*{¢}

implicit transitive permission (instead of restriction). This means that since we
have a flow betweea andb and betwee andc, we must have also a flow
betweera andc.

ExaMPLE 8 The secure transitive interoperation reconfiguratiorb dfand
S3 (Example 5) with transitive entitg for permission flows is depicted in
Figure 4. A

DEFINITION 8 Secure Reconfiguration For Transitivity (permissiomsyys-
tem S1 with configurationCg; is securely reconfigured a:sgf to deal with
transitive entities4, where

Cs'(X.2) = (Cs1i(X,Y) ®C5i(Y, 2)) bix 7y
whereCy, is defined as follows:
= for each entitye € ENT, Cy,(e,e) =T,

= if (e,0) € Cg,,ande € A (thatise is a transitive entity), the@iy, (e, g) =
T

Note that we hav€s; C Cg;* O

7. Discussion and Conclusions

The approach that we present in this paper represents a paraditjin gtaf
modelling and analysis of interoperability. We present a constraint model tha
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provides a natural description of a network of interoperating systemsleWh
constraint solving is NP-complete in general, this has not detracted from its
uptake as a practical approach to solving many real-world problems [Wallac
1996]. Previous approaches determine secure interoperation in pabino
time, but re-configuring an existing network of systems for secure interop
eration, in an optimal way, is NP-complete [Gong and Qian, 1994, Gong and
Qian, 1996]. Using a constraint model, we can rely on a significant bédy o
successful techniques from the field of constraint processing finfirthe set

of secure re-configurations with reasonable effort. As part of ouré work

in this area we plan to develop an constraint-based implementation with which

to demonstrate our approach on some real world data.
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