
Fast Automatic Synthesis of Security Protocols Using
Backward Search

Hongbin Zhou
Department of Computer Science

University College, Cork
Cork, Ireland

zhou@cs.ucc.ie

Simon N. Foley
Department of Computer Science

University College, Cork
Cork, Ireland

s.foley@cs.ucc.ie

ABSTRACT
An automatic security protocol generator is proposed that
uses logic-based synthesis rules to guide it in a backward
search for suitable protocols from protocol goals. The ap-
proach taken is unlike existing automatic protocol genera-
tors which typically carry out a forward search for candidate
protocols from the protocol assumptions. A prototype gen-
erator has been built that performs well in the automatic
generation of authentication and key exchange protocols.

In solving a problem of this sort, the grand thing
is to be able to reason backward.

—Sir Arthur Conan Doyle (Sherlock Holmes),
A Study in Scarlet, 1887.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Security and
protection; C.2.2 [Network Protocols]: Protocol Verifica-
tion; K.6.5 [Security and Protection]: Authentication;
D.2.4 [Software/Program Verification]: Formal meth-
ods

General Terms
Security, Design

Keywords
security protocols, automatic generation, backward search,
belief logic

1. INTRODUCTION
Security Protocols are widely used in distributed systems

for authentication, key exchange and other security require-
ments. Designing well behaved security protocols is a chal-
lenging task since protocols often contain subtle flaws that
are difficult to find. In the last 20 years, many approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-781-8/03/0010 ...$5.00.

for verifying properties of security protocols have been de-
veloped such as [5, 10, 9, 19, 17, 22]. However, little work
has been carried out on systematic approaches to the design
and development of security protocols

Abadi and Needham [2] set out ten principles that help
designers avoid classes of known protocol flaws. However,
the principles are neither necessary nor sufficient: designers
can not necessarily design new protocols by obeying only
these principles. A number of formal design approaches
for security protocols have been proposed. [3] describes a
weakest-precondition based approach for the design of secu-
rity protocols. The Simple/BSW logic [6] is a BAN-like logic
that provides synthesis rules to guide the protocol designer
in the manual systematic calculation of a protocol from its
goals.

We are interested in the automatic generation of a pro-
tocol from its protocol goals and assumptions. Existing re-
search includes Clark and Jacob’s evolutionary search [8]
and Perrig and Song’s Automatic Protocol Generator (APG)
[18]. Both approaches automatically search a large space of
candidate protocols that is far larger than could be consid-
ered via a manual design.

Starting from a set of assumptions, [8] uses the original in-
ference rules of the BAN logic to systematically test whether
candidate protocols uphold the protocol goals. The evolu-
tionary approach starts from a set of assumptions, and uses
a fitness function to guide the application of BAN rules in
a forward manner until a valid protocol is arrived at. How-
ever, providing an accurate fitness function for a protocol is
very difficult, and in cases potentially impossible [8]. Perrig
and Song’s APG [18] uses heuristics to select random can-
didate protocols that are in turn checked for validity using
the Athena [20] security protocol checker.

Guttman [11] proposes a manual protocol design method-
ology that is based on authentication tests [12]. For different
goals, individual subprotocols are generated that are com-
bined together to form the final protocol. However, it is a
manual design process and relies on the skill of the protocol
designer.

In this paper, we propose the Automatic Synthesis Pro-
tocol Builder (ASPB) that uses a novel approach to auto-
matically generating security protocols. The approach com-
bines and automates the manual synthesis rules from the
BSW Logic with Guttman’s manual design process. We
adapt the synthesis rules of the BSW logic to guide an au-
tomatic backwards search for a sub-protocol from a single
goal. Given a number of individual goals, an automated

technique is proposed to combine synthesized sub-protocols
into final candidate protocols.

This paper is organized as follows. The BSW logic is
outlined in Section 2. Section 3 describes the automatic
protocol synthesizer in detail; this section also describes how
the synthesis rules can be used as heuristics to guide the
automatic backward search for protocols within the logic.
We discuss the advantages of our approach and compare it
with other approaches in Section 4. The Appendix contains
an example of a protocol requirement specification and a
number of sample protocols that were generated.

2. THE BSW LOGIC
The BSW Logic [6] is a BAN-style belief logic that uses

abstract channels similar to the Spi Calculus [1] to represent
keyed communication between principals. The set of prin-
cipals that can receive and can send messages via a channel
C is denoted by its reader set r(C) and its writer set w(C),
respectively. For example, r(C) = Ω and w(C) = {P} rep-
resents an authentic channel, whereby any principal (from
Ω) can authenticate messages signed by the private key of
principal P .

The logic uses the following basic formulae. P ,Q range
over principals; C represents the channel; X represents a
message which can be data or formulae or both; φ represents
a formula.

• P ▹X: Principal P sees message X. Someone has sent
X via a channel that P can read.

• P ▹C(X)1: P sees C(X). Someone has sent a message
X via channel C. If P can not read C then P can not
discover the content of X.

• P |∼ X: P once said X. P sent a message contained
X at some point in the past. We do not know exactly
when the message was sent.

• P ∥∼ X: P says X. P sent X in the current run of the
protocol.

• ♯(X): Message X is fresh. X has never been said before
the current run of the protocol. This is usually true
for messages containing nonces.

• P |≡ φ: P believes that φ is true. It does not mean
that φ is really true, but P believes it.

The BSW logic also uses the conventional logic operators
∧ (conjunction), ∨ (disjunction) and → (implication) from
propositional logic and some basic notation from set theory.

In the BAN logic principals are treated as trustworthy
and in GNY there are fixed axioms for reasoning about the
trustworthiness of a principal. In BSW, the rules about the
trustworthiness of a principal are expressed as formulae as
part of the assumptions of the protocol.

Example 1. (Adapted from [6]). Mutual authentication
between principals A and B may be expressed as goals:

G1
∆
= A |≡ (B ∥∼ (A,Na))

G2
∆
= B |≡ (A ∥∼ (B, Nb))

1Note that we do not use the related formula P ▹X | C from
[6] which defines that P sees message X via channel C since
it can be replaced by the other formulae in the deduction
axioms without any loss of expressiveness.

where Na is a nonce (and assumptions include A |≡ ♯(Na),
and so forth). We assume that A and B share symmetric
keys (abstracted as channels Cas and Cbs, respectively) with
third party S. These assumptions are defined as follows.

r(Cas) = {A, S}; r(Cas) = {A, S};

A |≡ (w(Cas) = {A, S}); S |≡ (w(Cas) = {A, S});
A further assumption is that A trusts S as a trusted third
party:

A |≡ ((S ∥∼ φ1) → (A |≡ φ1))

A |≡ ((S ∥∼ (B |∼ φ2)) → (B |∼ φ2))

for arbitrary φ1, φ2. These formulae reflect A’s belief that
S is honest and that S is competent in deciding whether B
at some time in the past said some message. B has similar
beliefs. △

In addition to basic axioms about sets, the logic uses four
core axioms.

S1 Seeing. If P receives a message X via a channel C, and
P can read this channel, then P can see the message.

P ▹ C(X), P ∈ r(C)
P ▹ X

F1 Freshness. If P believes another principal Q once said
a message X and P believes that X is fresh, then P
believes that Q says X.

P |≡ (Q |∼ X), P |≡ ♯(X)
P |≡ (Q ∥∼ X)

I1 Interpretation. If P believes he receives a message via C,
then he believes that the message was said by some-
one, who he believes is able to write channel C except
himself.

P ▹ C(X), P ∈ r(C), P |≡ (w(C) = W)
P |≡ ∀Qi∈W\{P}(Qi |∼ X))

R1 Rationality. This is the well-known K axiom of modal
logic: if P believes φ1 implies φ2, and believes that φ1

is true, then he believes that φ2 is true.

P |≡ (φ1 → φ2), P |≡ φ1

P |≡ φ2

3. ASPB
Figure 1 outlines the the architecture of ASPB. A pro-

tocol specification (assumptions and goals) are parsed and
decomposed into a series of single goal protocol requirements
from which a collection of subprotocols are synthesized from
individual goals using the Single Goal Synthesizer. The Pro-
tocol Composer merges the subprotocols to form complete
candidate protocols. The Protocol Selector selects what is
considered the most suitable protocol from the candidate
protocols.

3.1 The Requirement Specification
The protocol specification defines the known assumptions

and goals for the protocol to be designed. We use the BSW
logic syntax developed in [15] to represent necessary decla-
rations, assumptions and goals. Appendix A gives the com-
plete specification for a mutual authentication symmetric
key protocol that uses a trusted third party (TTP) (intro-
duced in Example 1).

Requirement
Specification

Requirement
Specification

Parser

Single Goal
Synthesizer

Single Goal
Synthesizer

Protocol
Composer

Protocol
Selector

Init state
for goal 1

Init state
for goal n

Subprotocols
for goal 1

Subprotocols
for goal n

candidate
protocols

Single Goal
Synthesizer

Init state
for goal i

Subprotocols
for goal i

Correct protocols
(within the logic)

Figure 1: Overview of ASPB

3.2 The Requirement Specification Parser
The Requirement Specification Parser parses the specifi-

cation and uses basic set theory axioms to deduce all avail-
able assumptions from the specified assumptions and any
currently established goals. For each goal to be proven, the
parser generates an initial state that includes all available
assumptions and a formula tree whose root is a goal in the
requirement specification.

3.3 Heuristic Rules for Single Goal Synthesis
The BSW Logic includes a synthesis technique that can

be used to guide the (manual) systematic calculation of a
protocol from its goals. Synthesis rules take the general
form

G

↪→ G1

↪→ ...

which means that in order to reach the goal G, all subgoals
G1, G2, ... have to be reached. A goal G can have the
form G′/G′′, which means that either G′ or G′′ have to be
reached. Nine synthesis rules of this form are proposed in
[6]. We use these synthesis rules to develop core heuris-
tics to guide the automatic backwards search for candidate
protocols from their goals. These heuristics are derived as
theorems within the logic.

Heur1 To see message X, P must receive C(X) and be able
to read C.

P ▹ X

↪→ P ▹ C(X)

↪→ P ∈ r(C)

Heur2 To believe Q says X, P must believe that Q said X
and X is fresh.

P |≡ Q ∥∼ X

↪→ P |≡ Q |∼ X

↪→ P |≡ ♯(X)

Heur3 To believe that message X is fresh, P must believe
that some part X ′ of X is fresh.

P |≡ ♯(X)

↪→ P |≡ ♯(X ′)

Heur4 To believe that Q said X, P has to receive X via
a channel C that he can read and that he believes it
can be written only by Q, or P and Q. Furthermore,
Q has to see X.

P |≡ Q |∼ X

↪→ P ▹ C(X)

↪→ P ∈ r(C)

↪→ P |≡ (w(C) = {Q})/
P |≡ (w(C) = {P, Q})

↪→ Q ▹ X

If X is a formula and P believes that Q is honest, then
Q must also believe X.

P |≡ Q |∼ X

↪→ P ▹ C(X)

↪→ P ∈ r(C)

↪→ P |≡ (w(C) = {Q})/
P |≡ (w(C) = {P, Q})

↪→ Q |≡ X

↪→ P |≡ ((Q ∥∼ X) → (Q |≡ X))

Heur5 To believes φ1, P must believe φ2 and φ2 → φ1.

P |≡ φ1

↪→ P |≡ φ2

↪→ P |≡ (φ2 → φ1)

3.4 The Single Goal Synthesizer
An automatic verification tool [15] for the BSW Logic has

been implemented using Theory Generation [13]. This tool
[15] also supports (manually guided) synthesis of protocols

using the synthesis rules described in [6]. The Single Goal
Synthesizer described in this paper builds on this manual
tool in [15] by automatically carrying out the synthesis pro-
cess.

The Single Goal Synthesizer accepts an initial state from
the Requirement Specification Parser, and decomposes its
goal by the heuristic rules above. Algorithm 1 describes
this process.

Algorithm 1 StateSet syn(State initState)

State s;
StateSet L = {initState};
StateSet R = φ;
while ¬ empty(L) do

s = choose(L);
L = L \ s;
if hasGoal(s) then

S’ = subsyn(s);
L = add(L, S’);

else
R = add(R, s);

end if
end while
return R;

Operation choose(L) picks an arbitrary state from the
state set L.

Operation subsyn(s) returns the next transition state set
of s. It selects an interim subgoal of s, and applies the
currently applicable heuristic rules to the subgoal. For the
given assumptions it generates all conclusions by all appli-
cable logical rules.

If no heuristic rule can be applied to a subgoal then it is
a leaf in the tree. If a leaf matches an assumption, or has
the format P ▹C(X) (a protocol step), then it is a reachable
leaf, also called it a terminal subgoal. If all leaves in a tree
are reachable subgoals, then there is a possible subprotocol
for the goal which is the root of the tree and it is added to
the set of returned protocols R.

After the application of a heuristic rule, the Single Goal
Synthesizer checks whether the resulting subgoals are in-
terim or terminal subgoals. If the subgoal matches a proto-
col message or an assumption then it is a terminal subgoal
and the searching at this point will complete. Otherwise, in
the case of an interim subgoal it added to the current state
s.

Figure 2 gives an example of the formula tree generated
from the goal G1 of Example 1 (using assumptions from the
complete specification in Appendix A). Initially, two new
subgoals A |≡ ♯(A,Na) and A |≡ (B |∼ (A, Na)) are deduced
by applying Huer 2 to G1. Applying Huer 3 to subgoal
A |≡ ♯(A, Na), formula A |≡ ♯(Na) is deduced which is an
assumption in the protocol requirement specification and
thus the search on this branch terminates (reachable leaf).
The heuristic rules for other subgoals are similarly applied,
resulting in the tree in Figure 2. Note that the temporal
ordering of subgoals in the heuristics is important. When
Heur 4 is applied to the subgoal S |≡ (B |∼ (A, Na)) in
Figure 2, B must see the message (A,Na) before it is seen
by S, otherwise B can not write X to channel Cbs.

Example 2. Continuing Example 1, two subprotocols are
automatically synthesized from Goal G1. Subprotocol 1.1

corresponds to the protocol messages from the search tree
in Figure 2.

Subprotocol 1.1

A ,

B ▹ Cp(A,Na),

S ▹ Cbs(A, Na),

A ▹ Cas(B |∼ (A, Na)).

Synthesis generates a further search tree with corresponding
Subprotocol 1.2.

Subprotocol 1.2

A ,

S ▹ Cas(A, Na),

B ▹ Cbs(A,Na),

A ▹ Cp(A, Na).

Note that the first line of a subprotocol indicates the subpro-
tocol initiator. The synthesis of the symmetrically similar
goal G2 generates two similar search trees from which sym-
metrically similar subprotocols 2.1 and 2.2 are obtained(See
Appendix A.2). △

The Single Goal Synthesizer uses the heuristics to direct
its backwards search for valid protocols from a protocol goal.
This optimal strategy ensures that all candidate protocols
obtained from the search tree are valid in that they uphold
the goal within the logic. This contrasts with the forward
searching approaches that may process many invalid candi-
date protocols before encountering a valid protocol.

However, unlike the forward searching techniques, our ap-
proach generates protocols in a deterministic manner, due in
part to the treatment of free variables by the heuristics (for
example, Heur 5). In theory these free variables could be
bound to any logical formula, resulting in an infinite state
space. In practice, we match those formulae only with held
assumptions. Despite this restriction, we can still gener-
ate useful protocols; investigating alternative strategies for
binding free variables is a topic for future research.

3.5 The Protocol Composer
The Single Goal Synthesizer is used to generate proto-

cols from a single goal. While not considered in the original
paper [6], it is possible in theory to use the BSW synthe-
sis rules to synthesize multiple goals. However, in practice,
building a search tree for multiple goals results in a potential
state explosion as each step must consider the application
of all possible combinations of heuristic rules that could be
applied in the current state. ASPB avoids this problem by
synthesizing only single goal protocols and uses the Protocol
Composer to, in turn, merge the resulting subprotocols that
are generated from individual protocol goals into a single
candidate protocols that meets the composition of goals.

A security protocol is a sequence of message exchanges
between principals to achieve some security goals. At an ab-
stract level, these message exchanges can be described just
in terms of principal sequencing. For example, subprotocol
1.1 (Example 1) has principal sequence A → B → S →
A; subprotocol 2.1 (in Appendix) has principal sequence
B → A → S → B; The Protocol Composer uses princi-
pal sequencing to guide the construction of new protocols
by merging subprotocols messages.

A |≡ (B ∥∼ (A,Na)) [2]

!! ""!!!!!!!!!!!!!!!!!!!!

A |≡ ♯(A, Na) [3]

!!

A |≡ (B |∼ (A,Na)) [5]

!! ##"""""""""""""""""""""""""

A |≡ ♯(Na) A |≡ (S |≡ (B |∼ (A,Na))) [5]

!! ##"""""""""""""""""""""""""
A |≡ (S |≡ (B |∼ (A,Na)) → (B |∼ (A, Na))))

A |≡ (S ∥∼ (B |∼ (A, Na))) [2]

$$#####################

!!

A |≡ (S ∥∼ (B |∼ (A, Na)) → (S |≡ (B |∼ (A,Na)))))

A |≡ ♯(B |∼ (A, Na))) [3]

!!

A |≡ (S |∼ (B |∼ (A,Na))) [4]

!! ""!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%%

A ∈ r(Cas),
A |≡ (w(Cas) = {A, S}),

A |≡ (S ∥∼ (B |∼ (A, Na)) → (S |≡ (B |∼ (A,Na)))))

A |≡ ♯(Na) A ▹ Cas(B |∼ (A,Na)) S |≡ (B |∼ (A, Na)) [4]

&&$$

''%%%%%%%%%%%%%%%%%%%%%%%%

!!
S ▹ Cbs(A,Na)

S ∈ r(Cbs),
S |≡ (w(Cbs) = {B, S}) B ▹ (A,Na) [1]

''%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!
B ▹ Cp(A, Na) B ∈ r(Cp)

a protocol message a terminal subgoal an interim subgoal [heur i]

Figure 2: A Searching State for Goal G1
∆
= A |≡ (B ∥∼ (A, Na))

We define the merge of two subprotocols as follows. Define
a principal sequence to be a sequence of principal names
that specifies the order of message exchanges in a protocol.
Given principal sequences X and Y , then sequence X covers
sequence Y if Y appears as a fragmented subsequence of X.
For example, A → B → A → B → C covers A → C. Let
s(P) define the principal sequence of protocol P . A merge
of subprotocols P1 and P2 is given by a protocol P where
s(P) covers the sequences s(P1) and s(P2).

There can be many possible ways to merge two subpro-
tocols. The easiest way to merge two subprotocols would
be to append one to the end of the other. However, this
may lead to lengthly and inefficient protocols. This merg-
ing can be optimized if the sub-protocols contain common
sequence fragments. For example, subprotocol sequences
A → B → S → A and B → A → S → B include fragments
of the form A → · · · → S and A → · · · → B. These can
be used to guide the merging of the subprotocols to give an
shorter composition A → B → A → S → A → B and covers
original subprotocol sequences.

Given a collection of subprotocols P1 . . . Pn that meet
goals G1 . . . Gn of a protocol specification, respectively, then
the Protocol Composer searches for the shortest principal se-
quence that covers the sequences of the subprotocols P1 . . . Pn.
This is done using a variation of the shortest subsequence
algorithm. The final candidate protocol P is constructed us-
ing the generated principal sequence s(P) and the original
subprotocols P1 . . . Pn according to the following rules.

• Early appearing rule. A message from a subprotocol Pi

should appear in the candidate protocol P as early as
possible, constrained only by the principal sequences.

• Merging rule. Messages on common channels in the
subprotocols should be merged in the candidate pro-
tocol, subject to the constraints of the principal se-
quences. For example, message C1(X1), C2(X2, Y1)
and C1(X3), C2(X2, Y2) merge into resulting message
C1(X1, X3), C2(X2, X2, Y1, Y2).

• Reducing rule. Any redundant message components
should be reduced. For example, message C(X2, X2)
should be reduced to C(X2).

The Single Goal Synthesizer generates messages expressed
as formulae within the logic. The final implementation of
these protocols will be in terms of conventional messages.
For example, message Cas(A |∼ Na) and Cas(A ▹ Na)
should be expressed by the same format Cas(A,Na). To
minimize the potential for replay attacks where ‘similar’
messages appear in different parts of a protocol, the mes-
sages are modified to make them distinct from one another.
For example, Cas(A,Na, 0) and Cas(A,Na, 1) or Cas(A,Na)
and Cas(Na, A).

Example 3. The synthesis of goals G1 and G2 gener-
ate subprotocols 1.1 and 1.2 and subprotocols 2.1 and 2.2,
respectively. Thus there are 2×2 possible combinations of
the protocols to be considered for merging. Furthermore, for
each pair of subprotocols, we must find the shortest merge
of the two subprotocols. ASPB generates the following ‘best’

protocol (in 3.1 seconds):

A ,

B ▹ Cp(A, Na),

S ▹ Cbs(A,B, Na, Nb),

A ▹ Cas(A, B, Na, Nb),

B ▹ Cp(B, Nb).

This protocol is the merge of subprotocols 1.1 and 2.2 from
Example 1. △

In general, given subprotocols SP1 and SP2 that uphold
goals G1 and G2, then the monotonicity of the BSW logic
ensures that the resulting merged candidate protocol as out-
lined above also upholds the goals G1 and G2 within the
logic. However, there are many examples of secure protocols,
which when composed are vulnerable to attack. For exam-
ple, the Protocol Composer generates the following simple
mutual authentication protocol.

Msg1 A → B : A, Na,

Msg2 B → A : B, Nb, {A, Na}Kab

Msg3 A → B : {B, Nb}Kab

While secure within BSW and many other belief logics, this
protocol is subject to a reflection/oracle attack. We suggest
that techniques such as [4] may prove useful in making can-
didate protocols robust against such attacks. For example,
by ensuring that the initiator challenge looks different to the
respondent challenge. This is the purpose of the Protocol
Selector. Alternatively, the generated protocols could be re-
analyzed using a more sophisticated protocol analysis tools.
In this latter case, the ASPB would be used to narrow down
the set of candidate protocols to be verified.

3.6 The Protocol Selector
All the protocols generated by the Protocol Composer are

valid within our logic. However, belief logics do have weak-
nesses and it is useful to consider verification of additional
ad-hoc properties. For example, the non-injective agree-
ment property [14]: “For certain data items ds, if each time
a principal B completes a run of the protocol as responder
using ds, apparently with A, then there is a unique run of
the protocol with the principal A as initiator using ds, ap-
parently with B.” Such unsuitable protocols that are easy to
identify are discarded following verification by typical proto-
cols checkers such as FDR, Athena. The Protocol Selector’s
role is to similarly discard these unsuitable candidates.

Example 4. ASPB uses heuristics from [23] to remove
redundant information from messages. For example, the
logic formulae in the generated protocol from Example 3 are
reduced and then simplified using Heuristic 2 [23] to give:

Msg1 A → B : A,Na,

Msg2 B → S : B, {A, Na, Nb}Kbs ,

Msg3 S → A : {Na, Nb, B}Kas ,

Msg4 A → B : Nb.

△

4. DISCUSSION AND EVALUATION
In this section, we evaluate ASPB and compare it with

existing approaches, in particular, the Automatic Protocol
Generator (APG) [18].

ASPB generates protocols that are similar to those gener-
ated by APG. However, ASPB does not generate protocols
in the Protocol-Set S2 for authentication and key agreement
from [18] (this includes the original Yahalom protocol). The
reason for is that the protocols in Protocol-Set S2 have the
assumption that B believes that A is honest. If B believes A
accepts a session key then B will accept it. This assumption
is not made in the requirement specification in Appendix A
which was used to conduct our experiments.

We use “Heuristic 3” defined in [23] as: ”Encrypted replies
from one of the parties need not be nested inside encrypted
messages of the other party.”. Thus, for example, the mes-
sage {M ′, {M}KXA}KY A should be replaced by the corre-
sponding message ({M}KXA , {M ′}KY A).

4.1 Four Message Protocols
ASPB synthesizes the following four-message mutual au-

thentication protocols from goals G1 and G2 (Example 1).
Protocol 3.1:

Msg1 A → B : A,Na,

Msg2 B → S : B, {A, Na, Nb}Kbs ,

Msg3 S → A : {Nb, Kab}Kbs , {B, Na, Nb, Kab}Kas

Msg4 A → B : {Nb}Kab , {Nb, Kab}Kbs .

Protocol 3.2:

Msg1 A → B : A,Na,

Msg2 B → S : B, {A, Na, Nb}Kbs ,

Msg3 S → A : {Nb, Kab}Kbs , {B, Na, Nb, Kab}Kas

Msg4 A → B : Nb, {Nb, Kab}Kbs .

Protocol 3.3:

Msg1 A → B : A,Na, {B, Na}Kas ,

Msg2 B → S : B, {B, Na}Kas , {A, Na, Nb}Kbs ,

Msg3 S → A : {Nb, Kab}Kbs , {Na, Nb, Kab}Kas

Msg4 A → B : {Nb}Kab , {Nb, Kab}Kbs .

Protocols 3.1 and 3.2 also appear in Protocol-Sets S1 and
S3 from [18]. In Protocol 3.1 B believes that A receives
Kab from S. However, this is not the case in Protocol 3.2
since A does not use the key Kab (to encrypt the nonce).
In the new Protocol 3.3, when the TTP S receives Msg2,
S may check whether two principals knows who the other
party is in the current round. If S finds that one of attempts
to cheat the other one, then it can stop the current round
as early as possible. While Protocol 3.3 has a higher cost
(in terms of message size) than the other protocols, it pro-
vides a more powerful TTP. Appendix B.2 describes further
protocols that were generated in this category.

protocol purpose ASPB APGa

Stage 1b Stage 2c

mutual authentication 3 sec. 4 sec. 10 min.
mutual authentication (4 messages) 15 sec. 20 sec. 2 hr.
and key agreement (5 messages) 25 sec. 80 sec. N/A

aAPG timing is based on generating the best protocol result running on
on a 400MHz Intel Pentium III [18].
bTime to synthesize and generate all candidate protocols running on a
1.8GHz Intel Pentium IV.
cEstimated time that the Athena [20] checker would take to further
validate the ASPB generated candidate protocols.

Table 1: The time performance comparison between ASPB and APG

4.2 Five Message Protocols
Carlsen describes a five message protocol, the Secret Key

Initiator Protocol [7], as follows:

Msg1 A → B : A, Na,

Msg2 B → S : A, B, Na, Nb,

Msg3 S → B : {Na, B, Kab}Kas , {A, Nb, Kab}Kbs ,

Msg4 B → A : {Na, B, Kab}Kas , {Na}Kab , N ′b,

Msg5 A → B : {N ′b}Kab .

In this protocol Principal B uses two nonces. The proto-
col requirement specification (Appendix A) that formed the
basis of our experiments specified that Principal B uses one
nonce. A consequence of this is that the exact Carlsen pro-
tocol is not generated; however a number of not dissimi-
lar protocols were generated by ASPB. We conjecture that
the Protocol Composer generate the Carlsen protocol if the
protocol specification was extended to include B use of two
nonces.

Protocol 4.1:

Msg1 A → B : A, Na,

Msg2 B → S : A, B, Na, Nb,

Msg3 S → B : {A, Nb, Kab}Kbs , {Na, Nb, Kab, B}Kas ,

Msg4 B → A : {Na, Nb, Kab, B}Kas , {Na}Kab ,

Msg5 A → B : {Nb}Kab .

Protocol 4.2:

Msg1 A → B : A, Na,

Msg2 B → S : B, {A, Na, Nb}Kbs ,

Msg3 S → A : {Nb, Kab}Kbs , {B, Na, Nb, Kab}Kas ,

Msg4 A → B : {Nb}Kab , {Nb, Kab}Kbs ,

Msg5 B → A : {Na}Kab .

Protocol 4.3:

Msg1 A → B : A, Na,

Msg2 B → A : B, Nb, {A, Na}Kbs ,

Msg3 A → S : A, {Nb, B}Kas , {Na, A}Kbs ,

Msg4 S → A : {Na, Nb, Kab}Kas , {Nb, Kab}Kbs ,

Msg5 A → B : {Nb, Kab}Kbs , {Nb}Kab .

Protocol 4.1 is similar to Carlsen’s Secret Key Initiator
Protocol. While B generates only one nonce Nb in Protocol
4.1, it achieves the same result as Carlsen’s protocol. Once B
receives Msg3, he can check whether S believes that B needs

a session key with A, and S believes Nb is B’s nonce. When
A receives Msg4, she may believe that Nb is generated by
B (otherwise, B may not generate {Na}Kab).

The first four message of Protocol 4.2 are the same as
Protocol 3.1. From the additional message Msg5, Protocol
4.2 meets an additional goal that A believes B has received
the session key Kab.

Protocol 4.3 is a novel protocol. When S receives Msg3,
he may check whether the components have been generated
by A and B. If this is the case then S sends Msg4. Further
five-message protocols that were generated by ASPB are
given in Appendix B.2.

4.3 Discussion
Table 1 provides a time performance comparison between

ASPB and APG [18]. The first row gives the performance
results for generating the mutual authentication protocol de-
scribed in Example 1 (and specified in Appendix A). The
other experiment was for mutual authentication and key
agreement with TTP. The second row gives the result for
4 message protocols. The last row gives the result for 5
message protocols. The results of similar experiments were
reported in [18].

It is clear from Table 1, that ASPB is faster than APG at
generating correct protocols under comparable conditions.
APG has not been tested for five message protocols; in this
case we conjecture that the forward search approach of APG
would result in a very large and potentially infeasible search
space. ASPB generates approximately 500 valid protocols,
however, on inspection, many of these protocols are similar,
containing minor textual and redundant variations. On in-
spection, we estimate that in this set there are 24 reasonably
distinct four-message candidate protocols and 76 reasonably
distinct five-message protocols, though some of them are not
the minimal cost protocols. We select several protocols for
each category to demonstrate our results in this paper.

Since the Single Goal Synthesizer is completely indepen-
dent of the Protocol Composer, our approach does not de-
pend on the BSW logic. In future research, we can extend
the logic (or change the basic logic to others) to suit a more
complex environment.

Finally, by parallelizing the single goal synthesis and com-
position steps across separate processors it would be straight-
forward achieve increased performance.

5. CONCLUSION
In this paper we describe how the synthesis process of

the BSW logic can be used to guide the automatic gen-

eration of security protocols. It uses a backward search
approach: searching for suitable protocols from the proto-
col goals. This is unlike existing approaches which typi-
cally search in a forward manner from protocol assumptions
for protocols that meet the required goals. This backward
search approach limits the size of the search space and pre-
liminary results described in this paper indicate a better
performance than existing forward search techniques.

This backwards search forms the heart of the ASPB proto-
col generating tool. Single goals are synthesized to subproto-
cols, which are in turn composed to form the final protocols.
Various heuristics are used to guide the selection and design
of candidate protocols.

However, the approach does have some limitations. Firstly,
by binding free variables only to formulae from known as-
sumptions, the set of potential candidate protocols is re-
duced. Whether this is a significant constraint is a topic for
future research. Secondly, the BSW logic is based on a be-
lief logic and, as such, does have limitations when compared
with other techniques such as [19, 17]. However, ASPB
could be used narrow down the set of candidate protocols
to be verified by a more sophisticated checker.

6. ACKNOWLEDGMENTS
We are grateful for helpful feedback from the anonymous

referees. This work is supported by the Boole Centre for
Research in Informatics, University College Cork under the
HEA-PRTLI scheme.

7. REFERENCES
[1] M. Abadi and A. D. Gordon. A calculus for

cryptographic protocols: The spi calculus. In Fourth
ACM Conference on Computer and Communications
Security, pages 36–47. ACM Press, 1997.

[2] M. Abadi and R. Needham. Prudent engineering
practice for cryptographic protocols. In Proceedings of
1994 IEEE Computer Society Symposium on Research
in Security and Privace, pages 122–136. IEEE
Computer Society Press, 1994.

[3] J. Alves-Foss and T. Soule. A weakest precondition
calculus for analysis of cryptographic protocols. In
DIMACS Protocols Workshop, 1997.

[4] Tuomas Aura. Strategies against replay attacks. In
Computer Security Foundations Workshop, pages
29–68, 1997.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer
Systems, 8(1):18–36, February 1990.

[6] L. Buttyán, S. Staamann, and U. Wilhelm. A simple
logic for authentication protocol design. In 11th IEEE
Computer Security Foundations Workshop, pages
153–162. IEEE Computer Society Press, 1998.

[7] Ulf Carlsen. Optimal privacy and authentication on a
portable communications system. Operating systems
review, 28(3):16–23, 1994.

[8] John A Clark and Jeremy L Jacob. Searching for a
solution: Engineering tradeoffs and the evolution of
provable secure protocols. In Proceedings 2000 IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, May 2000.

[9] D. Dolev and A.C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,

29(2):198–208, 1983.
[10] Li Gong, Roger Needham, and Raphael Yahalom.

Reasoning about belief in cryptographic protocols. In
Proceedings of the IEEE 1990 Symposium on Security
and Privacy, pages 234–248, Oakland, California, May
1990. IEEE Computer Society Press.

[11] Joshua D. Guttman. Security protocol design via
authentication tests. In Proceedings of 15th IEEE
Computer Security Foundations Workshop. IEEE
Computer Society Press, April 2002.

[12] Joshua D. Guttman and F. Javier Thayer.
Authentication tests. In Proceedings of 2000 IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, 2000.

[13] D. Kindred and J.M. Wing. Theory generation for
security protocols. ACM TOPLAS, July 1999.

[14] G. Lowe. A hierarchy of authentication specifications.
In PCSFW: Proceedings of The 10th Computer
Security Foundations Workshop. IEEE Computer
Society Press, 1997.

[15] D. O’Crualaoich and S.N. Foley. Theory generation for
the simple logic. Technical report, University College
Cork, 2002. In preparation.

[16] L. Paulson. Relations between secrets: Two formal
analyses of the yahalom protocol. In TR, Cambridge
University, England, 1998.

[17] L.C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer
Security, 6:85–128, 1998.

[18] A. Perrig and D.X. Song. Looking for diamonds in the
desert: extending automatic protocol generation to
three-party authenticatoin and key agreement
protocols. In Proceedings of 13th IEEE Computer
Security Foundations Workshop. IEEE Computer
Society Press, July 2000.

[19] A.W. Roscoe. Using intensional specifications of
security protocols. In Proceedings of the Computer
Security Foundations Workshop, pages 28–38. IEEE
Press, 1996.

[20] D. X. Song. Athena: a new efficient automated
checker for security protocol analysis. In Proceedings
of the 12th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, June 1999.

[21] P. Syverson. A taxonomy of replay attacks. In
Proceedings of IEEE Computer Security Foudations
Workshop, pages 187–191, 1994.

[22] F. Javier Thayer, Jonathan C. Herzog, and Joshua D.
Guttman. Strand spaces: why is a security protocol
correct? In Proceedings of 1998 IEEE Symposium on
Security and Privacy, 1998.

[23] T. Y. C. Woo and S. S. Lam. A lesson on
authentication protocol design. Operating System
Review, pages 24–37, 1994.

APPENDIX
A. MUTUALAUTHENTICATIONWITHTTP

A.1 Requirement Specification
Note that we express the public channel by the symbol

Cp. The reason is that P ▹ C(X) is the only terminal state
which can appear in protocols. P ▹X is always translated to
P ▹ Cp(X) and P ∈ r(C). We hold the similar assumptions
about Cp in all specifications.

declarations {
ChannelCas,Cbs,Cp;
Principal A, B, S;
Nonce Na, Nb;
Message X;
Formula φ;

}
assumptions {

A |≡ (w(Cas) = {A, S});
S |≡ (w(Cas) = {A, S});
B |≡ (w(Cbs) = {B, S});

S |≡ (w(Cbs) = {B, S});
A ∈ r(Cas); S ∈ r(Cas);
B ∈ r(Cbs); S ∈ r(Cbs);
A ∈ r(Cp); A ∈ w(Cp);
B ∈ r(Cp); B ∈ w(Cp);
S ∈ r(Cp); S ∈ w(Cp);
A |≡ ♯(Na); B |≡ ♯(Nb);
A |≡ ((S ∥∼ φ) → (S |≡ φ));
B |≡ ((S ∥∼ φ) → (S |≡ φ));
A |≡ ((S |≡ (B |∼ X)) → (B |∼ X));
B |≡ ((S |≡ (A |∼ X)) → (A |∼ X));

}
goals {

A |≡ (B ∥∼ (A,Na)); /* G1*/
B |≡ (A ∥∼ (B, Nb)); /* G2*/

}

A.2 Subprotocols for G2

Subprotocol 2.1

B ,

A ▹ Cp(B, Nb),

S ▹ Cas(B,Nb),

B ▹ Cbs(A |∼ (B,Nb)).

Subprotocol 2.2.

B ,

S ▹ Cbs(B, Nb),

A ▹ Cas(B, Nb),

B ▹ Cp(B, Nb).

B. SAMPLE PROTOCOLS GENERATED

B.1 Mutual Authentication without TTP

B.1.1 Using symmetric keys
ASPB generated four correct protocols in 1.2 seconds.

Protocol 2.1.

Msg1 A → B : {A, Na}Kab,

Msg2 B → A : {Na, Nb}Kab ,

Msg3 A → B : Nb.

Protocol 2.2.

Msg1 : A → B : A, Na,

Msg2 : B → A : {B, Na, Nb}Kab ,

Msg3 : A → B : Nb.

Changing the last message of Protocols 2.1 and 2.2 to
{Nb}Kab , results in the other two protocols that were gen-
erated.

B.1.2 Using signature keys
ASPB generated two correct protocols in 1.2 seconds.
Protocol 2.3.

Msg1 A → B : A, Na,

Msg2 B → A : {A, Na, Nb}SKb ,

Msg3 A → B : {B, Nb}SKa .

Protocol 2.4.

Msg1 A → B : {A, Na}SKa ,

Msg2 B → A : {A, Na, Nb}SKb ,

Msg3 A → B : {B, Nb}SKa .

B.2 MutualAuthentication andKeyExchange
Protocols with TTP using symmetric keys

B.2.1 Four message protocols
Protocol 3.4.

Msg1 A → B : A, Na,

Msg2 B → S : B, Nb, {A, Na}Kbs ,

Msg3 S → A : {A, Nb, Kab}Kbs , {B, Na, Nb, Kab}Kas

Msg4 A → B : {Nb}Kab , {A, Nb, Kab}Kbs .

Protocol 3.5.

Msg1 A → B : A,Na,

Msg2 B → S : B, {A, Na, Nb}Kbs ,

Msg3 S → A : Nb, {Nb, Kab}Kbs , {B, Na, Kab}Kas

Msg4 A → B : {Nb}Kab , {Nb, Kab}Kbs .

Protocol 3.6.(BAN optimized Yahalom protocol [5])

Msg1 A → B : A, Na,

Msg2 B → S : B, Nb, {A, Na}Kbs ,

Msg3 S → A : Nb, {A, Nb, Kab}Kbs , {Na, Kab, B}Kas

Msg4 A → B : {Nb}Kab , {A, Nb, Kab}Kbs .

Protocol 3.7.(Paulson amended Yahalom Protocol [16])

Msg1 A → B : A, Na,

Msg2 B → S : B, Nb, {A, Na}Kbs ,

Msg3 S → A : Nb, {A, B, Nb, Kab}Kbs , {B, Na, Kab}Kas

Msg4 A → B : {Nb}Kab , {A, B, Nb, Kab}Kbs .

Syverson[21] found a flaw of Protocol 3.6, however, ASPB
uses the following assumptions.

• A principal can recognize his own nonces of the run-
ning rounds, and refuse to use them as other principal’s
nonces.

• If a principal may understand a message context, the
principal may distinguish the format of different com-
ponents, such as principal name, nonce, key, etc.

By these assumptions, Protocol 3.6 is also a correct protocol.

B.2.2 Five Message Protocols
In this section, we select a further three five-message pro-

tocols from those that were generated by ASPB.
Protocol 4.4.

Msg1 A → B : A, Na, {A, Na}Kas ,

Msg2 B → S : B, {A, Na, Nb}Kbs , {A, Na}Kas ,

Msg3 S → A : {Na, Nb, Kab}Kbs , {B, Na, Nb, Kab}Kas ,

Msg4 A → B : {Nb}Kab , {Na, Nb, Kab}Kbs ,

Msg5 B → A : {Na}Kab .

Protocol 4.5.

Msg1 A → B : A, {B, Na}Kas ,

Msg2 B → S : B, {A, Nb}Kas , {B, Na}Kbs ,

Msg3 S → B : {Na, Nb, Kab}Kas , {Na, Nb, Kab}Kbs ,

Msg4 B → A : Na, {Na, Nb, Kab}Kas ,

Msg5 A → B : Nb.

Protocol 4.6.

Msg1 A → B : A, {B, Na}Kas ,

Msg2 B → S : B, {A, Nb}Kas , {B, Na}Kbs ,

Msg3 S → A : {Na, Nb, Kab}Kas , {Na, Nb, Kab}Kbs ,

Msg4 A → B : {Nb}Kab , {Na, Nb, Kab}Kas ,

Msg5 B → A : {Na}Kab .

